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Chapter II. Linear Operators T : V → W.

II.1 Generalities. A map T : V → W between vector spaces is a linear
operator if for any v, v1, v2 ∈ V and λ ∈ K

1. Scaling operations are preserved: T (λ·v) = λ·T (v)

2. Sums are preserved: T (v1 + v2) = T (v1) + T (v2)

This is equivalent to saying

T(
∑

i

λivi) =
∑

i

λiT (vi) in W

for all finite linear combinations of vectors in V . A trivial example is the zero operator
T (v) = 0W , for every v ∈ V . If W = V the identity operator, idV : V → V is given by
id(v) = v for all vectors. Some basic properties of any linear operator T : V → W are:

1. T (0V ) = 0W . [Proof: T (0V ) = T (0 · 0V ) = 0·T (0V ) = 0W .]

2. T (−v) = −T (v). [Proof: T (−v) = T ((−1) · v) = (−1) · T (0V ) = 0W .]

3. A linear operator is determined by its action on any set S of vectors that span V .
If T1, T2 : V → W are linear operators and

T1(s) = T2(s) for all s ∈ S,

then T1 = T2 everywhere on V . [Proof: Any v ∈ V is a finite linear combination
v =

∑

i cisi; then T1(v) =
∑

i ciTi(si) = T2(v).]

1.1. Exercise. If S ⊆ V and T : V → W is a linear operator prove that

T(K-span{S}) is equal to K-span{T (S)}.

1.2. Definition. We write HomK(V, W ) for the space of linear operators T : V → W .
This becomes a vector space over K if we define

1. (T1 + T2)(v) = T1(v) + T2(v);

2. (λ·T )(v) = λ·(T (v)).

for any v ∈ V , λ ∈ K . The vector space axioms are easily verified. The zero element in
Hom(V, W ) is the zero operator: 0(v) = 0W for every v ∈ V . The additive inverse −T is
is the operator −T (v) = (−1)·T (v) = T (−v), which is also a scalar multiple −T = (−1)T
of T . !

If V = W we can also define the composition product S ◦ T of two operators,

(S ◦ T )(v) = S(T (v)) for all v ∈ V

This makes HomK(V ) = HomK(V, V ) a noncommutative associative algebra with iden-
tity I = idV .

A linear operator T : V → W over K determines two important vector subspaces,
the kernel K(T ) = ker(T ) in the initial space V and the range R(T ) = range(T ) in the
target space W .
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Figure 2.1. A linear map T : V → W sends all points in a coset x + K(T ) of the kernel
to a single point T (x) in W . Different cosets map to different points, and all images land
within the range R(T ). The zero coset 0V + K(T ) collapses to the origin 0W in W .

1. K(T ) = ker(T ) = {v ∈ V : T (v) = 0W }. The dimension of this space is often
referred to as Nullity(T ).

2. R(T ) = range(T ) is the image set T (V ) = {T (v) : v ∈ V }. Its dimension is the
rank

rank(T ) = dimK (range(T )) ,

which is often abbreviated as rk(T ).

1.3. Exercise. Show that ker(T ) and range(T ) are vector subspaces of V and W re-
spectively.

We often have to decide whether a linear map is one-to-one, onto, or a bijection. For
surjectivity, we must compute the range R(T ); determining whether T is one-to-one is
easier, and amounts to computing the kernel K(T ). The diagram Figure 2.1 illustrates
the general behavior of any linear operator. Each coset v + K(T ) of the kernel gets
mapped to a single point in W because

T (v + K(T )) = T (v) + T (K(T )) = T (v) + 0W = T (v) ,

and distinct cosets go to different points in W . All points in V map into the range
R(T ) ⊆ W .

1.4. Lemma. A linear operator T : V → W is one-to-one if and only if ker(T ) = 0.

Proof: (⇐). If T (v1) = T (v2) for v1 ̸= v2, then 0 = T (v1) − T (v2) = T (v1 − v2),
so v2 − v1 ̸= 0 is in ker(T ) and the kernel is nontrivial. We have just proved the
“contrapositive” ¬(T is one-to-one) ⇒ ¬(K(T ) = {0}) of the statment (⇐) we want,
but the two are logically equivalent.
Moral: If you want to prove (P ⇒ Q) it is sometimes easier to prove the equivalent
contrapositive statement (¬Q ⇒ ¬P ), as was the case here.

Proof: (⇒). Suppose T is one-to-one. If v ̸= 0V then Tv ̸= T (0V ) = 0W so v /∈ K(T )
and K(T ) reduces to {0}. !

The following important result is closely related to Theorem 5.7 (Chapter I) for quotient
spaces.

1.5. Theorem (The Dimension Theorem). If T : V → W is a linear operator and
V is finite dimensional, the range R(T ) is finite dimensional and is related to the kernel
K(T ) via

(7) dim(R(T )) + dim(K(T )) = dim(V )
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In words, “rank + nullity = dimension of the initial space V .” This can also be expressed
in short form by writing |R(T )| + |K(T )| = |V |.
Proof: The kernel is finite dimensional because K(T ) ⊆ V ⇒ dim(K(T )) ≤ dim(V ) <
∞. The range R(T ) is also finite dimensional. In fact, if {v1, ..., vn} is a basis for V
every w ∈ R(T ) has the form w = T (v) =

∑

i ciT (vi), so the vectors T (v1), ...., T (vn)
span R(T ). Therefore dim(R(T )) ≤ n = dim(V ).

Now let {w1, ..., wm} be a basis for K(T ). By adjoining additional vectors from V we
can obtain a basis {w1, ...., wm, vm+1, ..., vm+k} for V . Obviously, m = dim(K(T )) and
m+ k = dim(V ). To get k = dim(R(T )) we show that the vectors T (vm+1), ...., T (vm+k)
are a basis for R(T ). They certainly span R(T ) because w ∈ R(T ) ⇒ w = T (v) for some
v ∈ V , which can be written

v = c1w1 + ... + cmwm + cm+1vm+1 + . . . + cm+kvm+k (cj ∈ K)

Since wj ∈ K(T ) and T (wj) = 0W we see that

w = T (v) = 0W + ... + 0W +
k
∑

j=1

cm+jT (vm+j) .

so v ∈ K-span{T (vr+1, . . . , T (vr+k}.
These vectors are also independent, for if

0W =
k
∑

i=1

cm+iT (vm+i) = T(
k
∑

i=1‘

cm+ivm+i)

that means
∑

i cm+ivm+i ∈ K(T ) and there are coefficients c1, ..., cm such that
∑m

i=1 ciwi =
∑k

j=1 cm+jvm+j , or

0V = −c1w1 − ... − cmwm + cm+1vm+1 + ... + cm+kvm+k

Because {w1, ..., vm+k} is a basis for V we must have c1 = ... = cm+k = 0, proving
independence of T (vm+1), ..., T (vm+k). Thus dim(R(T )) = k as claimed. !

1.6. Corollary. Let T : V → W be a linear operator between finite dimensional vector
spaces such that dim(V ) = dim(W ), which certainly holds if V = W . Then the following
assertions are equivalent:

(i) T is one-to-one (ii) T is surjective (iii) T is bijective.

Proof: By the Dimension Theorem we have |K(T )| + |R(T )| = |V |. If T is one-to-one
then K(T ) = (0), so by (7) |R(T )| = |V | = |W |, Since R(T ) ⊆ W the only way that this
can happen is to have R(T ) = W – i.e. T is surjective. Finally, if T is surjective then
|R(T )| = |W | = |V | by hypothesis. Invoking (7) we see that |K(T )| = 0, the kernel is
trivial, and T is one-to-one.

We just proved that T is one-to-one if and only if T is surjective, so either condition
implies T is bijective. !

1.7. Exercise. Explain why a spanning set X = {v1, ..., vn} is a basis for a finite
dimensional space if and only the vectors in X are independent (

∑n
i=1 civi = 0V ⇒ c1 =

. . . = cn = 0).

1.8. Proposition. Let V be a finite dimensional vector space and {v1, ..., vn} a basis.
Select any n vectors w1, ..., wn in some other vector space W . Then, there is a unique
linear operator T : V → W such that T (vi) = wi for 1 ≤ i ≤ n.

Proof: Uniqueness of T (if it exists) was proved in our initial comments about linear
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operators. To construct such a T define T (
∑n

i=1 λivi) =
∑n

i=1 λiwi for all choices of
λ1, ...,λn ∈ K. This is obviously well-defined since {vi} is a basis, and is easily seen to
be a linear operator from V → W . !

One prolific source of linear operators is the correspondence between n × m matrices
A with entries in K and the linear operators LA : Km → Kn determined by matrix
multiplication

LA(v) = A · v (matrix product (n × m)·(m × 1) = (n × 1)) ,

if we regard v ∈ Km as an m × 1 column vector.

1.9. Example. Let LA : R3 → R4 ( or C3 → C4, same discussion) be the linear operator
associated with the 4 × 3 matrix

A =

⎛

⎜

⎜

⎝

1 2 3
1 0 2
2 1 1
1 1 1

⎞

⎟

⎟

⎠

Describe ker(LA) and range(LA) by finding explicit basis vectors in these spaces.

Solution: The range R(LA) of LA is determined by finding all y for which there is an
x ∈ K3 such that Ax = y. Row reduction of the augmented matrix [A : y] yields

⎛

⎜

⎜

⎝

1 2 3 y1

1 0 2 y2

2 1 1 y3

1 1 1 y4

⎞

⎟

⎟

⎠

→

⎛

⎜

⎜

⎝

1 2 3 y1

0 −2 −1 y2 − y1

0 −3 −5 y3 − 2y1

0 −1 −2 y4 − y1

⎞

⎟

⎟

⎠

→

⎛

⎜

⎜

⎝

1 2 3 y1

0 1 2 y1 − y4

0 2 1 y1 − y2

0 3 5 2y1 − y3

⎞

⎟

⎟

⎠

→

⎛

⎜

⎜

⎝

1 2 3 y1

0 1 2 y1 − y4

0 0 −3 y1 − y2 − 2(y1 − y4)
0 0 −1 2y1 − y3 − 3(y1 − y4)

⎞

⎟

⎟

⎠

→

⎛

⎜

⎜

⎝

1 2 3 y1

0 1 2 y1 − y4

0 0 1 y1 + y3 − 3y4

0 0 0 2y1 − y2 + 3y3 − 7y4

⎞

⎟

⎟

⎠

There are no solutions x ∈ K3 unless y ∈ K4 lies the 3-dimensional solution set of the
equation

2y1 − y2 + 3y3 − 7y4 = 0.

When this constraint is satisfied, backsolving yields exactly one solution for each such y.
Thus R(LA) is the solution set of equation

2y1 − y2 + 3y3 − 7y4 = 0

When this is written as a matrix equation By = 0 (B = the 1 × 4 matrix [2,−1, 3, 7] ),

y2, y3, y4 are free variables and then y1 = 1
2 (y2−3y3 +7y4), so a typical vector in R(LA)

has the form

y =

⎛

⎜

⎜

⎜

⎝

1
2 (y2 − 3y3 + 7y4)

y2

y3

y4

⎞

⎟

⎟

⎟

⎠

= y2 ·

⎛

⎜

⎜

⎜

⎝

1
2

1
0
0

⎞

⎟

⎟

⎟

⎠

+ y3 ·

⎛

⎜

⎜

⎜

⎝

−3
2

0
1
0

⎞

⎟

⎟

⎟

⎠

+ y4 ·

⎛

⎜

⎜

⎜

⎝

7
2

0
0
1

⎞

⎟

⎟

⎟

⎠

with y1, y2, y3 ∈ K. The column vectors u2 = col(1, 2, 0, 0), u3 = col(−3, 0, 2, 0), u4 =
col(7, 0, 0, 2) obviously span R(LA) and are easily seen to be linearly independent, so
they are a basis for the range, which has dimension |R(LA)| = 3.
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The kernel: Now we want to find all solutions x ∈ K3 of the homogeneous equation
Ax = 0. The same row operations used above transform [A : 0] to:

⎛

⎜

⎜

⎝

1 2 3 0

0 1 2 0

0 0 1 0
0 0 0 0

⎞

⎟

⎟

⎠

Then x = col(x1, x2, x3) has entries x1 = x2 = x3 = 0. Therefore

K(LA) = {x ∈ K3 : LA(x) = Ax = 0} is the trivial subspace {0}

and there is no basis to be found.
Note that |R(LA)| + |K(LA)| = 3 + 0 = dimension of the initial space K3, while the

target space W = K4 has dimension = 4. !

1.10. Example. Let LA : R4 → R4 be the linear operator associated with the 4 × 4
matrix

A =

⎛

⎜

⎜

⎝

1 2 3 0
1 0 2 −1
2 1 1 2
1 1 1 1

⎞

⎟

⎟

⎠

Describe the kernel K(LA) and range R(LA) by finding basis vectors.

Solution: The range of LA is determined by finding all y such that y = Ax for some
x ∈ R4. Row reduction of [A : y] yields
0

B

B

@

1 2 3 0 y1

1 0 2 −1 y2

2 1 1 2 y3

1 1 1 1 y4

1

C

C

A

→

0

B

B

@

1 2 3 0 y1

0 −2 −1 −1 y2 − y1

0 −3 −5 2 y3 − 2y1

0 −1 −2 1 y4 − y1

1

C

C

A

→

0

B

B

@

1 2 3 0 y1

0 1 2 −1 y1 − y4

0 2 1 1 y1 − y2

0 3 5 −2 2y1 − y3

1

C

C

A

→

0

B

B

@

1 2 3 0 y1

0 1 2 −1 y1 − y4

0 0 −3 3 y1 − y2 − 2(y1 − y4)
0 0 −1 1 2y1 − y3 − 3(y1 − y4)

1

C

C

A

→

0

B

B

B

B

@

1 2 3 0 y1

0 1 2 −1 y1 − y4

0 0 1 −1 y1 + y3 − 3y4

0 0 0 0 2y1 − y2 + 3y3 − 7y4

1

C

C

C

C

A

There are no solutions x in R4 unless y lies the 3-dimensional solution set of the linear
equation

2y1 − y2 + 3y3 − 7y4 = 0

– i.e. y is a solution of the matrix equation

Cy = 0 where C = [ 2 , −1 , 3 , −7 ]
1×4

There exist multiple solutions, and then R(LA) = {y ∈ R4 : Cy = 0} is nontrivial.

Multiplying C by 1
2 puts it in echelon form, so y2, y3, y4 are free variables in solving

Cy = 0 and y1 = 1
2 (y2 − 3y3 + 7y4). Thus a vector y ∈ R4 is in the range R(LA) ⇔

y =

0

B

B

B

@

1
2 (y2 − 3y3 + 7y4)

y2

y3

y4

1

C

C

C

A

= y2 ·

0

B

B

B

@

1
2

1
0
0

1

C

C

C

A

+ y3 ·

0

B

B

B

@

−
3
2

0
1
0

1

C

C

C

A

+ y4 ·

0

B

B

B

@

7
2

0
0
1

1

C

C

C

A

with y1, y2, y3 ∈ R3. The column vectors u2 = col(1, 2, 0, 0), u3 = col(−3, 0, 2, 0), u4 =
col(7, 0, 0, 2), obviously span R(LA) and are easily seen to be linearly independent, so they
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are a basis for the range and dim(R(LA)) = 3. (Hence also |K(LA)| = |V |− |R(LA)| = 1
by the Dimension Theorem.)

The kernel: K(LA) can be found by setting y = 0 in the preceding echelon form of
[A : y], which becomes

⎛

⎜

⎜

⎝

1 2 3 0 0

0 1 2 −1 0

0 0 1 −1 0
0 0 0 0 0

⎞

⎟

⎟

⎠

Now x4 is the free variable and

x3 = x4

x2 = −2x3 + x4 = −x4

x1 = −2x2 − 3x3 = −x4 ,

hence,

K(LA) = K ·

0

B

B

@

−1
−1
1
1

1

C

C

A

is one dimensional as expected.
Given a vector y in the range R(LA) we can find a particular solution x0 of Ax = y

by setting the free variable x4 = 0. Then

x3 = x4 + y1 + y3 − 3y4 = y1 + y3 − 3y4,

x2 = −2x3 + x4 + y1 − y4 = −y1 − 2y3 + 5y4,

x1 = −2x2 − 3x3 + y1 = y1 + (2y1 + 4y3 − 10y4) + (−3y1 − 3y3 + 9y4)

= y3 − y4

and

x0 =

⎛

⎜

⎜

⎝

y3 − y4

−y1 − 2y3 + 5y4

y1 + y3 − 3y4

0

⎞

⎟

⎟

⎠

is a particular solution for Ax = y. The full set of solutions is the additive coset
x0 + K(LA) of the kernel of LA. !

1.11. Exercise. If A ∈ M(n × m, K) prove that

1. Range(LA) is equal to Col(A) = K-span{C1, . . . , Cm}, the subspace of Kn spanned
by the columns of A.

so
dim(Range(LA)i) = dim (Col(A))

II.2. Invariant Subspaces.

If T : V → V (V = W ) is a linear operator, a subspace W is T -invariant if T (W ) ⊆ W .
Invariant subspaces are important in determining the structure of T , as we shall see.
Note that the subspaces (0), R(T ) = range(T ) = T (V ), K(T ) = ker(T ), and V are all
T -invariant. Structural analysis of T proceeds initially by searching for eigenvectors:
nonzero vectors v ∈ V such that T (v) is a scalar multiple T (v) = λ·v, for some λ ∈ K.
These are precisely the vectors in ker(T − λI) where I : V → V is the identity operator
on V . Eigenvectors may or may not exist; when they do they have a story to tell.
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2.1. Definition. Fix a linear map T : V → V and scalar λ ∈ K. The λ-eigenspace is

Eλ(T ) = {v ∈ V : T (v) = λ·v} = {v ∈ V : (T − λI)(v) = 0} = ker(T − λI)

We say that λ ∈ K is an eigenvalue for T if the eigenspace is nontrivial, Eλ(T ) ̸= (0).

If V is finite dimensional we will eventually see that the number of eigenvalues is ≤ n
(possibly zero) because it is the set of roots in K of the “characteristic polynomial”

pT (x) = det(T − xI) ∈ K[x] ,

which has degree n = dimK(V ). The set of distinct eigenvalues in K is called the
spectrum of T and is denoted

spK(T ) = {λ ∈ K : such that T (v) = λ·v for some v ̸= 0}
= {λ ∈ K : Eλ ̸= (0)}

Depending on the nature of the ground field, spK(T ) may be the empty set; it is always
nonempty if K = C, because every nonconstant polynomial has at least one root in C

(Fundamental Theorem of Algebra). The point is that all eigenspaces Eλ are T -invariant
subspaces because T and (T − λI) “commute,” hence

(T − λI)(Tv) = T ((T − λI)v) = 0 if v ∈ Eλ

The Eλ are also “essentially disjoint” from each other in the sense that Eµ ∩ Eλ = (0),
if µ ̸= λ. (You can’t have λ·v = µ ·v (or (λ − µ)·v = 0) for nonzero v if µ ̸= λ.) Note
that ker(T ) is the eigenspace corresponding to λ = 0 since

Eλ=0 = {v : (T − 0·I)(v) = T (v) = 0} = ker(T ) ,

and λ = 0 is an eigenvalue in spK(T ) ⇔ this kernel is nontrivial. When λ = 1, Eλ=1 is
the set of “fixed points” under the action of T .

Eλ=1 = Fix(T ) = {v : T (v) = v} (the fixed points in V )

Decomposition of Operators. We now show that if W ⊆ V is an invariant

subspace, so T (W ) ⊆ W , then T induces linear operators in W and in the quotient
space V/W :

1. Restriction: T |W : W → W is the restriction of T to W , so (T |W)(w) = T (w),
for all w ∈ W .

2. Quotient Operator: The operator T̃ : V/W → V/W , sometimes denoted TV/W ,
is induced by the action of T on additive cosets:

(8) TV/W (x + W ) = T (x) + W for all cosets in V/W .

The outcome is determined using a representative x for the coset, but as shown
below different representatives yield the same result, so TV/W is well defined.

2.2. Theorem. Given a linear operator T : V → V and an invariant subspace W ,
there is a unique linear operator T̃ : V/W → V/W that makes the following diagram
“commute” in the sense that π ◦ T = T̃ ◦ π, where π : V → V/W is the quotient map.

V
T−→ V

π ↓ ↓ π

V/W
T̃−→ V/W
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Note: We have already shown that the quotient map π : V → V/W is a linear operator
between vector spaces.

Proof: Existence. The restriction T |W is clearly a linear operator on W . As for the
induced map T̃ on V/W , the fact that T (W ) ⊆ W implies

T (x + W ) = T (x) + T (W ) ⊆ T (x) + W for x ∈ V

suggests that (8) is the right definition. It automatically insures that T̃ ◦ π = π ◦ T ; the
problem is to show the outcome T̃ (x + W ) = T (x) + W is independent of the choice of
coset representative x ∈ V . For this, suppose x′+W = x+W . Then x′ = x′+0 = x+w0

for some w0 ∈ W and

T (x′) + W = T (x + w0) + W = T (x) + (T (w0) + W )

Since W is invariant we have T (w0) ∈ W , and T (w0) + W = W by Exercise 5.2 of
Chapter 1. Hence T (v′)+W = T (v)+W and the induced operator in (8) is well-defined.
Linearity of T̃ is easily checked: once we know T̃ is well-defined we get

T̃ ((v1 + W ) ⊕ (v2 + W )) = T̃ (v1 + v2 + W )
= T (v1 + v2) + W = T (v1) + T (v2) + W

= (T (v1) + W ) + (T (v2) + W ) (since W + W = W )

= T̃ (v1 + W ) ⊕ T̃ (v2 + W )

and similarly
T̃ (λ⊙ (v + W )) = T̃ (λ·v + W ) = λ⊙ T̃ (v + W )

Uniqeuness. If T̃1, T̃2 both satisfy the commutation relation T̃i ◦ π = π ◦ Ti, then

T̃1(v + W ) = T̃1 ◦ π(v) = π(T (v)) = T̃2(π(v)) = T̃2(v + W )

so T̃1 = T̃2 on V/W . !

A Look Ahead. If T : V → V is a linear operator on a finite dimensional space, we
will explain in Section II.4 how a matrix [T ]X is associated with T once a basis X in V
has been specified. If W is a T -invariant subspace we will see that much of the structural
information about T resides in the induced operators T |W and TV/W , and that in some
sense (to be made precise) T is assembled by “joining together” these smaller pieces.
This is a big help in trying to understand the action of T on V , but it does depend on
being able to find invariant subspaces – the more the better! To illustrate: if a basis
X = {w1, . . . , wm} in W is augmented to get a basis for V ,

Z = {w1, . . . , wm, vm+1, . . . , vm+k} (m + k = n = dim(V ))

we have seen that the image vectors v̄m+i = π(vm+i) are a basis Y in the quotient space
V/W . In Section II.4 we will show that the matrix [T ]Z assumes a special “block-upper
triangular form” with respect to such a basis.

[T ]Z =

⎛

⎝

A
m×m

∗
m×k

0 k×m B
k×k

⎞

⎠

where A = [T |W ]X and B = [TV/W ]Y. Clearly, much of the information about T is
encoded in the two diagonal blocks A, B; but some information is lost in passing from T
to T |W and TV/W – the “cross-terms” in the upper right block ∗ cannot be determined
if we only know the two induced operators. Additional information is needed to piece
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them together to recover T , and there may be more than one operator T yielding a
particular pair of induced operators (T |W , TV/W ). !

Isomorphisms of Vector Spaces. A linear map T : V → W is an isomorphism
between vector spaces if it is a bijection. Since T is a bijection there is a well-defined
“set-theoretic” inverse map in the opposite direction T−1 : W → V

T−1(w) = (the unique v ∈ V such that T (v) = w)

for any w ∈ W . In general it might not be easy to describe the inverse of a bijection
f : X → Y between two point sets in closed form

f−1(y) = (some explicit formula)

(Try finding x = f−1(y) where f : R → R is y = f(x) = x3 + x + 1, which is a bijection
because df/dx > 0 for all x.) But the inverse of a linear map is automatically linear, if
it exists. We write V ∼= W if there is an isomorphism between them.

2.3. Exercise. Suppose T : V → W is linear and a bijection. Prove that the set-
theoretic inverse map T−1 : W → V must be linear, so

T−1(λw) = λ·T−1(w) and T−1(w1 + w2) = T−1(w1) + T−1(w2)

Thus T and T−1 are both isomorphisms between V and W .
Hint: T−1 reverses the action of T and vice-versa, so T ◦T−1 = idW and T−1 ◦T = idV .

We now observe that an isomorphisms between vector spaces V and W identifies impor-
tant features of V with those of W . It maps

⎧

⎨

⎩

independent sets
spanning sets

bases
in V −−−−−−−→

⎧

⎨

⎩

independent sets
spanning sets

bases
in W

To illustrate, if {v1, ..., vn} are independent in V , then

0W =
n
∑

i=1

ciT (vi) = T(
∑

i

civi) ⇒ 0V =
n
∑

i=1

civi in V ⇒ c1 = ... = cn = 0 in K

because T (0V ) = 0W and T is one-to-one. Thus the vectors {T (v1), ..., T (vn)} are inde-
pendent in W . Similar arguments yield the other two assertions.

2.4. Exercise. If T : V → W is an isomorphism of vector spaces, verify that:

1. K-span{vi} = V ⇒ K-span{T (vi)} = W ;

2. {vi} is a basis in V ⇒ {T (vi)} is a basis in W .

In particular, isomorphic vector spaces V , W are either both infinite dimensional, or
both finite dimensional with dimK(V ) = dimK(W ).

The following result which relates linear operators, quotient spaces, and isomorphisms
will be cited often in analyzing the structure of linear operators. It is even valid for infinite
dimensional spaces.

2.5. Theorem (First Isomorphism Theorem). Let T : V → R(T ) ⊆ W be a
linear map with range R(T ). If K(T ) = ker(T ), there is a unique bijective linear map
T̃ : V/K(T ) → R(T ) that makes the following diagram “commute” (T̃ ◦ π = T ).

V
T−→ R(T ) ⊆ W

π ↓ ↗

V/K(T )
T̃
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where π : V → V/K is the quotient map. Furthermore R(T̃ ) = R(T ),
Hints: Try defining T̃ (v + K(T )) = T (v). Your first task is to show that the outcome
is independent of the particular coset representative – i.e. v′ + K(T ) = v + K(T ) ⇒
T (v′) = T (v), so T̃ is well-defined. Next show T̃ is linear, referring to the operations ⊕
and ⊙ in the quotient space V/K(T ). The commutation property T̃ ◦ π = T is built into
the definition of T̃ . For uniqueness, you must show that if S : V/K(T ) → W is any other
linear map such that S ◦ π = T , then S = T̃ ; this is trivial once you clearly understand
the question. !

Note that range(T̃ ) = range(T ) because the quotient map π : V → V/K is surjective:
w ∈ R(T̃ ) ⇔ there is a coset v + K(T ) such that T̃ (v + K(T )) = w; but then T (v) = w
and w ∈ R(T ). Since T̃ is an isomorphism between V/K(T ) and R(T ), dim(V/K(T )) =
dim(V ) − dim(K(T )) is equal to dim(R(T )).

II.3. (Internal) Direct Sum of Vector Spaces.
A vector space V is an (internal) direct sum of subspaces V1, ... ,Vn, indicated by
writing V = V1 ⊕ . . . ⊕ Vn, if

1. The linear span
∑n

i=1 Vi = {
∑n

i=1 vi : vi ∈ V } is all of V ;

2. Every v ∈ V has a unique representation as a sum v =
∑n

i=1 vi with vi ∈ Vi.

Once we know that the Vi span V , condition (2.) is equivalent to saying

2∗
n
∑

i=1

vi = 0 with vi ∈ Vi → vi = 0 for all i.

In fact, if a vector v has two different representations v =
∑

i vi =
∑

v′i then 0 =
∑n

i=1 v′′i
with v′′i = (v′i − vi) ∈ Vi. Then (2∗.) implies v′′i = 0 and v′i = vi for all i. Conversely, if
we can write 0 =

∑

wi with wi ∈ Vi not all zero, then the representation of a vector as
v =

∑

i vi (vi ∈ Vi) cannot be unique, since we could also write

0 =
∑

i

wi with wi ̸= 0 for some i ,

and then v = v + 0 =
∑

i(vi + wi) in which vi + wi ∈ Vi is ̸= vi. Thus the condition (2.)
is equivalent to (2∗.)

3.1. Example. We note the following examples of direct sum decompositions.

1. Kn = V ⊕ W where

V = {(x1, x2, 0, ..., 0) : x1, x2 ∈ K} and W = {(0, 0, x3, ..., xn) : xk ∈ K};

More generally, in an obvious sense we have Km+n ∼= Km ⊕ Kn.

2. The space of polynomials K[x] = V ⊕ W is a direct sum of the subspaces

• Even Polynomials: V = {
∑∞

i=0 aixi : ai = 0 for odd indices}
• Odd Polynomials: W = {

∑∞
i=0 aixi : ai = 0 for even indices }

3. For K = Q, R, C, matrix space M(n, K) is a direct sum A⊕ S of

• Antisymmetric Matrices: A = {A : At = −A}
• Symmetric Matrices: S = {A : At = A}.
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In fact, since (At)t = A we can write any matrix as

A = 1
2 (At + A) + 1

2 (At − A)

The first term is symmetric and the second antisymmetric, so M(n, K) = A + S,
(linear span).

If B ∈ A ∩ S then Bt = −B and also Bt = B, hence B = −B and B = 0 (the
zero matrix). Thus A ∩ S = (0) and Exercise 3.2 (below) implies that M(n, K) =
A⊕ S.
Note: This actually works for any field K in which 2 = 1 + 1 ̸= 0 because the “ 1

2”
in the formulas involves division by 2. In particular it works for the finite fields
Zp = Z/pZ except for Z2 = Z/2Z, in which [1] ⊕ [1] = [1 + 1] = [2] = [0] !

If subspaces V1, . . . , Vn span V it can be tricky to verify that V is a direct sum when
n ≥ 3, but if there are just two summands V1 and V2 (the case most often encountered)
there is a simple and extremely useful criterion for deciding whether V = V1 ⊕ V2.

3.2. Exercise. If E, F are subspaces of V show that V is the direct sum E ⊕ F if and
only if

1. They span V : E + F = {a + b : a ∈ E, b ∈ F} is all of V ;

2. Trivial intersection: E ∩ F = {0}.

It is important to note that this is not true when n ≥ 3. If
∑n

i=1 Vi = V and the spaces
are only “pairwise disjoint,”

Vi ∩ Vj = (0) for i ̸= j,

this is not enough to insure that V is a direct sum of the given subspaces (see the following
exercise).

3.3. Exercise. Find three distinct 1-dimensional subspaces Vi in the two dimensional
space R2 such that

1. Vi ∩ Vj = (0) for i ̸= j;

2.
∑3

i=1 Vi = R2

Explain why R2 is not a direct sum V1 ⊕ V2 ⊕ V3 of these subspaces.

3.4. Exercise. If V = V1 ⊕ . . . ⊕ Vn and V is finite dimensional, we have seen that
each Vi must be finite-dimensional with dim(Vi) ≤ dim(V ).

1. Given bases X1 ⊆ V1, ... , Xn ⊆ Vn, explain how to create a basis for all of V ;

2. Prove

(9) Dimension Formula for Sums: dimK(V1 ⊕ . . . ⊕ Vn) =
n
∑

i=1

dimK(Vi)

Direct sum decompositions play a large role in understanding the structure of linear
operators. Suppose T : V → V and V = V1⊕V2, and that both subspaces are T -invariant.
We get restricted operators T1 = T |V1

: V1 → V1 and T2 = T |V2
: V2 → V2, but because

both subspaces are T -invariant we can fully reconstruct the original operator T in V from
its “components” T1 and T2. In fact, every v ∈ V has a unique decomposition v = v1 +v2

(vi ∈ Vi) and then
T (v) = T (v1) + T (v2) = T1(v1) + T2(v2)
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We often indicate this decomposition by writing T = T1 ⊕ T2.
This does not work if only one subspace is invariant. But when both are invariant

and we take bases X1 = {v1, . . . , vm}, X2 = {vm+1, . . . , vm+k} for V1, V2, we will soon see
that the combined basis Y = {v1, . . . , vm, vm+1, . . . , vm+k} for all of V yields a matriix
of particularly simple “block-diagonal” form

[T ]Y =

⎛

⎝

A
m×m

0 m×k

0 k×m B
k×k

⎞

⎠

where A, B are the matrices of T1, T2 with respect to the bases X1 ⊆ V1 and X2 ⊆ V2.

Projections and Direct Sums. If V = V1 ⊕ . . . ⊕ Vn then for each i there is a
natural projection operator Pi : V → Vi ⊆ V , the “projection of V onto Vi along the
complementary subspace

⊕

j ̸=i Vj .” By definition we have

(10) Pi(v) = vi if v =
n
∑

j=1

vj is the unique decomposition with vj ∈ Vj .

A number of properties of these projection operators are easily verified.

3.5. Exercise. Show that the projections Pi associated with a direct sum decomposition
V = V1 ⊕ . . . ⊕ Vn have the following properties.

1. Linearity: Each Pi : V → V is a linear operator;

2. Idempotent Property: P 2
i = Pi ◦ Pi = Pi for all i;

3. Pi ◦ Pj = 0 if i ̸= j ;

4. range(Pi) = Vi and ker(Pi) is the linear span
∑

j ̸=i Vj ;

5. P1 + . . . + Pn = I (identity operator on V ).

If we represent vectors v ∈ V as ordered n-tuples (v1, ..., vn) in the Cartesian product set
V1 × . . . × Vn, the ith projection takes the form

Pi(v1, ..., vn) = (0, ..., 0, vi, 0, ..., 0) ∈ Vi ⊆ V.

Don’t be misled by this notation into thinking that we are speaking of orthogonal projec-
tions (onto orthogonal subspaces in Rn). The following example and exercises illustrate
what’s really happening.
Note: A vector space must be equipped with additional structure such as an inner prod-
uct if we want to speak of “orthogonality of vectors,” or their “lengths.” Such notions
are meaningless in an unadorned vector space. Nevertheless, inner product spaces are
important and will be fully discussed in Chapter VI.

3.6. Example. The plane R2 is a direct sum of the subspaces V1 = Re1 and V2 =
R(e1 + e2), where X = {e2, e2} are the standard basis vectors e1 = (1, 0) and e2 = (0, 1)
in R2. The maps

• P1 projecting V onto V1 along V2,

• P2 projecting V onto V2 along V1

are oblique projections, not the familiar orthogonal projections sending x = (x1, x2) to
(x1, 0) and to (0, x2) respectively, see Figure 2.1. Find an explicit formula for Pi(v1, v2),
for arbitrary pairs (v1, v2) in R2.
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Figure 2.2. Projections P1, P2 determined by a direct sum decomposition V = V1 ⊕ V2.
Here V = R2, V1 = Re1, V2 = R(e1 + e2); P1 projects vectors v ∈ V onto V1 along V2,
and likewise for P2.

Discussion: To calculate these projections we must write an arbitrary vector v =
(v1, v2) = v1e1 + v2e2 in the form a + b ∈ V1 ⊕ V2 where V1 = Re1 and V2 = R(e1 + e2).
The vectors Y = {f1, f2}

(11) f1 = e1 and f2 = e1 + e2

that determine the 1-dimensional spaces V1, V2 are easily seen to be a new basis for R2.
If v = c1f1 + c2f2 in the new basis, the action of the projections P1, P2 can be written
immediately based on the definitions:

(12) P1(c1f1 + c2f2) = c1f1 ( = c1e1)
P2(c1f1 + c2f2) = c2f2 ( = c2(e1 + e2) )

Now v = (v1, v2) is v1e1 + v2e2 in terms of the standard basis X in R2 and we want to
describe the outcomes P1(v), P2(v) in terms of the same basis.

First observe that the action of P2 is known as soon as we know the action i of P1:
by the Parallelogram Law for vector addition (see Figure 2.2) we have P1 + P2 = I, so

P2(v) = (I − P1)(v) = v − P1(v) for all v ∈ R2

Second, the projections Pi are linear so their action is known once we determine the
images Pi(ek) of the basis vectors ek because

Pi(v) = P1(v1, v2) = Pi(v1e1 + v2e2) = v1 ·Pi(e1) + v2 ·Pi(e2) (v1, v2 ∈ R)

The last step is to use the linear equations (11) to write the standard basis vectors
{e1, e2} in terms of the new basis {f1, f2}; then the action of P1 in the standard basis is
easily evaluated by applying (12). From (11) we get

e1 = f1 and e2 = f2 − f1

and then from (12),

P1(e1) = P1(f1) = f1 = e1

P1(e2) = P1(f2 − f1) = −f1 = −e1

and similarly

P2(e1) = P2(f1) = 0

P2(e2) = P2(f2 − f1) = f2 = e1 + e2
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The projections Pi can now be written in terms of the Cartesian coordinates in R2 as

P1(v1, v2) = v1P1(e1) + v2P1(e2)

= v1 ·e1 − v2 ·e1 = (v1 − v2, 0)

P2(v1, v2) = v1P2(e1) + v2P2(e2)

= v1 ·0 + v2 ·(e1 + e2) = (v2, v2)

It is interesting to calculate P 2
1 , P 2

2 and P1 ◦ P2 using the preceding formulas to verify
the properties listed in Exercise 3.5 !

The “idempotent property” P 2 = P for a linear operator is characteristic of projec-
tions associated with a direct sum decomposition V = V1 ⊕ V2. We have already seen
that if P, Q = (I − P ) are the projections associated with such a decomposition, then

(i) P 2 = P and Q2 = Q (ii) PQ = QP = 0 (iii) P + Q = I (identity operator)

But the converse is also true.

3.7. Proposition. If P : V → V is a linear operator such that P 2 = P , then V is a
direct sum V = R(P ) ⊕ K(P ) and P is the projection of V onto the range R(P ), along
the kernel K(P ). The operator Q = I − P is also idempotent, with

(13) R(Q) = R(I − P ) = K(P ) and K(Q) = K(I − P ) = R(P ) ,

and projects V onto K(P ) along R(P ).

Proof: First observe that Q = (I − P ) is also idempotent since

(I − P )2 = I − 2P + P 2 = I − 2P + P = (I − P ) .

Next, note that

Q(v) = (I − P )v = 0 ⇔ P (v) = v ⇔ v ∈ R(P ) .

[ Implication (⇒) in the last step is obvious. Conversely, if v ∈ R(P ) with v = P (w),
then P (v) = P 2(w) = P (w) = v, proving (⇐).] Thus

1. K(Q) = K(I − P ) is equal to R(P )

2. R(Q) = R(I − P ) is equal to K(P ) ,

proving (13).
Obviously P + Q = I because v = P (v) + (I − P )(v) implies P (v) ∈ R(P ), while

(I − P )(v) ∈ R(Q) = K(P ) by (13); thus the span R(P ) + K(P ) = R(P ) + R(Q)
is all of V . Furthermore K(P ) ∩ R(P ) = (0), for if v is in the intersection we have
v ∈ K(P ) ⇒ P (v) = 0. But we also have v ∈ R(P ), so v = P (w) for some w, and then

0 = P (v) = P 2(w) = P (w) = v .

By Exercise 3.2 we conclude that V = R(P ) ⊕ K(P ).
Finally, let P̃ be the projection onto R(P ) along K(P ) associated with this decom-

position; we claim that P̃ = P . By definition P̃ maps v = r + k ∈ R(P ) ⊕ K(P ) to r;
that, however, is exactly what our original operator P does:

P (r + k) = P (r) + P (k) = r + 0 = r .

Therefore P̃ = P as operators on V . !
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Direct Sums and Eigenspaces. Let T : V → V be a linear operator on a
finite dimensional space V . As above, the spectrum of T is the set of distinct eigenvalues
sp(T ) = {λ ∈ K : Eλ ̸= 0}, where Eλ is the (nontrivial) λ-eigenspace

Eλ = {v ∈ V : T (v) = λ·v} = ker(T − λI) (I = idV )

3.8. Definition. A linear operator T : V → V is diagonalizable if V is the direct sum
of the nontrivial eigenspaces,

V =
⊕

λ∈sp(T )

Eλ(T )

We will see below that this happens if and only if V has a basis f1, . . . , fn of eigenvectors,

T (fi) = µi ·fi for some µi ∈ K

for 1 ≤ i ≤ n.

Our next result shows that T is actually diagonalizable if we only know that the
eigenspaces span V , with

V =
∑

λ∈sp(T )

Eλ(T ) = K-span{Eλ : λ ∈ spK(T )}

(a property much easier to verify).

3.9. Proposition. If T : V → V is a linear operator on a finite dimensional space, let
W be the span

∑

λ∈spK(T ) Eλ(T ) of the eigenspaces. This space is T -invariant and is in

fact a direct sum W =
⊕

λ Eλ of the eigenspaces.

Proof: Since each Eλ is invariant their span W is also T -invariant. The Eλ span W
by hypothesis, so each w ∈ W has some decomposition w =

∑

λ wλ with wλ ∈ Eλ. For
uniqueness of this decomposition it suffices to show that

0 =
∑

λ∈sp(T )

wλ with wλ ∈ Eλ ⇒ each wλ = 0 .

The operators T, (T − λI), and (T − µI) commute for all µ,λ ∈ K since the identity
element I and its scalar multiples commute with everybody. Let us fix an eigenvalue λ0;
we will show wλ0

= 0. With this λ0 in mind we define the product

A =
∏

λ̸=λ0,λ∈sp(T )

(T − λI) .

Then
0 = A(0) = A(

∑

λ

wλ) =
∑

λ

A(wλ) = A(wλ0
) +

∑

λ̸=λ0

A(wλ)

If λ ̸= λ0 we have

A(wλ) =

⎛

⎝

∏

µ̸=λ0

(T − µI)

⎞

⎠ wλ =

⎛

⎝

∏

µ̸=λ0,λ

(T − µI)

⎞

⎠ · (T − λI)wλ = 0

because wλ ∈ Eλ. On the other hand, by writing (T − λ0I) + (λ0 − µ)I we find that

A(wλ0
) =

⎛

⎝

∏

µ̸=λ0

(T − µI)

⎞

⎠wλ0
=

⎛

⎝

∏

µ̸=λ0

(T − λ0I) + (λ0 − µ)I

⎞

⎠wλ0
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When we expand this product of sums, every term but one includes a factor (T − λ0I)
that kills wλ0

:

(Term) = (product of operators) · (T − λ0I)wλ0
= 0

The one exception is the product

⎛

⎝

∏

µ̸=λ0

(λ0 − µ)

⎞

⎠ · wλ0
.

The scalar out front cannot be zero because each µ ̸= λ0, so

A(wλ0
) =

∏

µ̸=λ0

(λ0 − µ) · wλ0
̸= 0

But we already observed that

0 = A(
∑

λ

wλ) = 0 + A(wλ0
)

so we get a contradiction unless wλ0
= 0. Thus each term in

∑

λ wλ is zero and W is the
direct sum of the eigenspaces Eλ. !

If W
⊂
̸= V this result tells us nothing about the behavior of T off of the subspace W ,

but if we list the distinct eigenvalues as λ1, . . . ,λr we can construct a basis for W that
runs first through Eλ1

, then through Eλ2
, etc to get a basis for W ,

X = {f (1)
1 , . . . , f (1)

d1
; f (2)

1 , . . . , f (2)
d2

; . . . ; f (r)
1 , . . . , f (r)

dr
}

where di = dim(Eλi
) and

∑

i di = m = dim(W ). The corresponding matrix describing
T |W is diagonal, so T |W is a diagonalizable operator on W even if T is not diagonalizable
on all of V .

(14) [T |W ]X,X =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

λ1 0
. . .

λ1

. . .
λr

. . .
0 λr

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

where sp(T ) = {λ1, ...,λr}.

3.10. Exercise. If a linear operator T : V → V acts on a finite dimensional space,
prove that the following statements are equivalent.

1. T is diagonalizable: V =
⊕

λ∈sp(T )

Eλ(T )

2. There is a basis f1, . . . , fn for V such that each fi is an eigenvector, with Tfi = µifi

for some µi ∈ K.

43



II.4. Representing Linear Operators as Matrices.
Let T : V → W be a linear operator between finite dimensional vector spaces with
dim(V ) = m, dim(W ) = n. An ordered basis in V is an ordered list X = {e1, . . . , en}
of vectors that are independent and span V ; let Y = {f1, ..., fn} be an ordered basis for
the target space W .

The behavior of a linear map T : V → W is completely determined by what it does
to the basis vectors in V because every v =

∑m
i=1 ciei (uniquely) and

T (
∑

i=1

ciei) =
n
∑

i=1

ciT (ei)

Each image T (ei) can be expressed uniquely as a linear combination of vectors in the Y
basis,

T (ei) =
n
∑

j=1

tjifj for 1 ≤ i ≤ m

yielding a system of m = dim(V ) vector equations that tell us how to rewrite vectors in
the X-basis in terms of vectors in the Y-basis

(15)

T (e1) = b11f1 + ... + b1nfn
...

T (em) = bm1f1 + ... + bmnfn

We define the matrix of T with respect to the bases X, Y to be the n × m matrix

[T ]YX = [tij ] (the transpose of the array of coefficients B = [bij ] in (15))

Since (Bt)kℓ = Bℓ,k that means tij = bji; to put it differently, the entries tij in [T ]YX

satisfy the following identities derived from (15)

(16) T (ei) =
n
∑

j=1

tjifj or 1 ≤ i ≤ m

Note carefully: the basis vector fj in (16) is paired with tji and not tij .
The matrix description of T : V → W changes if we take different bases; nevertheless,

the same operator T (which has a coordinate-independent existence) underlies all of
these descriptions. One objective in analyzing T is to find bases that yield the simplest
matrix descriptions. When V = W the best possible outcome is of course a basis that
diagonalizes T as in (14), but alas, not all operators are diagonalizable.

Another issue worth considering is the following: If T is the identity operator I = id
on a vector space V , and we compute [id]XX, the outcome is the same for all bases X,

[id]XX = In×n (the n × n identity matrix)

But there is no reason why we couldn’t take different bases in the initial and final spaces
(even if they are the same space), regarding T = idV as a map from (V, X) to (V, Y).
Then there are some surprises when you compute [T ]XY.

4.1. Exercise. Let V be 2-dimensional coordinate space R2. Let I : V → V be identity
map I = idV , but take different bases X = {e1, e2} and Y = {f1, f2} in the initial and
final spaces. Letting e1, e2 be the standard basis vectors in R2 and f1 = (1, 0), f2 = (1, 2),
compute the matrices

(i) [I]XX (ii) [I]YX (iii) [I]YY (iv) [I]XY
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4.2. Exercise. If V, W are finite dimensional and T : V → W is linear, prove that
there are always bases X, Y and X′, Y′ in V, W such that

(i) [I]YX =

(

0 0
0 Ir×r

)

(ii) [I]Y′X′ =

(

Ir×r 0
0 0

)

where r = rk(T ) = dim(range(T )) is the rank and Ir×r is the r × r identity matrix.
Hint: Finding a basis that produces (i) is fairly easy; part (ii) requires some thought
about the order in which basis vectors are listed. Both matrices represent the same
operator T : V → W .

The matrix description of T could hardly be simpler than those in Exercise 4.2, but at
the same time much information about T has been lost in allowing arbitrary unrelated
bases in V and W . Most operators encode far more information than can be captured
by the single number rk(T ).

In addition to our description of a linear operator T : V → W as a matrix, we can also
describe vectors v ∈ V , w ∈ W as column matrices once bases X = {ei} and Y = {fj}
are specified. The correspondence φX : V → Km is a linear bijection (an isomorphism of
vector spaces) defined by letting

φX(v) = [v]X =

⎛

⎜

⎝

v1
...

vm

⎞

⎟

⎠
if v =

∑m
i=1 viei (unique expansion)

Similarly φY : W → Kn is given by

φY(w) = [w]Y =

⎛

⎜

⎝

w1
...

wn

⎞

⎟

⎠
if w =

∑n
j=1 wjfj (unique expansion)

These coordinate descriptions of linear operators and vectors are closely related.

4.3. Proposition. If T : V → W is a linear operator and X, Y are bases in V , W then
for all v ∈ V :

φY(Tv) = [T ]YX · φX(v)

or equivalently,

[T (v)]Y = [T ]YX · [v]X (an (n × m)·(m × 1) matrix product)

Thus the ith component (Tv)i of φY(Tv) is given by the familiar formula

(Tv)i =
m
∑

k=1

tikvk for 1 ≤ i ≤ n

if v =
∑m

k=1 vkek and [T ]YX = [tij ].

Proof: If T (ei) =
∑n

j=1 tjifj and v =
∑m

k=1 vkek, then

T (v) = T(
m
∑

k=1

vkek) =
m
∑

k=1

vkT (ek) =
m
∑

k=1

vk(
n
∑

j=1

tjkfj) =
∑

j

(
∑

k

tjkvk) fj

So, the ith component (T (v))i of φY(T (v)) is
∑m

k=1 tikvk, as claimed. !

The natural linear maps φX : V → Km, m = dim(V ), and φY : W → Kn, n = dim(W ),
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are bijective isomorphisms. Therefore a unique linear map T̃ = φY ◦ T ◦ φ−1
X is induced

from Km → Kn that makes the following diagram commute.

(17)
V

T−→ W
φX ↓ ↓ φY

Km T̃−→ Kn

Figure 2.3. The diagram commutes,

with φY ◦ T = T̃ ◦ φX .

The map T̃ we get when T : V → W is transferred over to a map between coordinate
spaces is precisely the multiplication operator LA : Km → Kn, where

A = [T ]YX

is the coordinate matrix that describes T as in (15) and (16), see Exercise 4.13 below.
Once bases X, Y are specified there is also a natural linear isomorphism between the

space of linear operators HomK(V, W ) and the space of matrices M(n × m, K)

4.4. Lemma. If X, Y are bases for finite dimensional vector spaces V, W the map φ
from HomK(V, W ) → M(n × m, K) given by

φ(T ) = [T ]YX

is a linear bijection, so these vector spaces are isomorphic, and

dimK (HomK(V, W )) = dimK (M(n × m, K)) = m·n

Proof: Linearity of φ follows because if X = {ei} and Y = {fj} we have

(λ·T )(ei) = λ·(T (ei)) = λ·(
n
∑

j=1

tjifj) =
m
∑

j=1

(λtji)fj

for i ≤ i ≤ m, which means that [λT ]ij = λ·[T ]ij . Similarly, if we write [Tk]YX = [t(k)
ij ]

for k = 1, 2 we get

(T1 + T2)(ei) = T1(ei) + T2(ei) =
∑

j

t(1)ji fj +
∑

j

t(2)ji fj =
∑

j

(t(1)ji + t(2)ji ) fj

So [T1 + T2]ij = [T1]ij + [T2]ij , proving linearity of φ as a map from operators to matri-
ces.

One-to-One: To see φ is one-to-one it now suffices to show ker(φ) = (0) – i.e. if
φ(T ) = [T ]YX = [0] then T is the zero operator on V . This is clear: If tji = 0 for all i, j
then T (ei) =

∑m
j=1 tjiej = 0 for all i, and T (v) = 0 for all v because {ei} is a basis.

Surjective: To prove φ surjective: given an n × m matrix A = [aij ] we must produce a
linear operator T : V → W and bases X, Y such that [T ]YX = [aij ]. This can done by
working by the definition of [T ]YX backward: we saw earlier that there is a unique linear
operator T : V → W such that T (ei) =

∑n
j=1 ajifj, because {ei} = X is a basis in V .

Then, by definition of [T ]YX as in (15) - (16) we have tij = aij . !

When V = W composition of operators S ◦ T makes sense and the space of linear
operators HomK(V, V ) becomes a (noncommutative) associative algebra, with the identity
operator I = idV as the multiplicative identity element. The set of matrices M(n, K)
is also an associative algebra, under matrix multiplication; its identity element is the
n×n diagonal identity matrix In×n = diag(1, 1, . . . , 1). These systems are “isomorphic”
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as associative algebras, as well as vector spaces, because the bijection φ : Hom(V, V ) →
M(n, K) intertertwines the multiplication operations (◦) and (·).

4.5. Proposition. The bijective linear map φ : HomK(V, V ) → M(n, K) intertwines the
product operations in these algebras:

(18) φ(S ◦ T ) = φ(S) · φ(T ) for all S, T ∈ Hom(V, V )

Given the correspondence between operators and their matrix representations, this is
equivalent to saying that

[S ◦ T ]XX = [S]XX · [T ]XX

for every basis X in V , where we take matrix product on the right.

This is a special case of a much more general result.

4.6. Proposition. Let U
T−→ V

S−→ W be linear maps and let X = {ui}, Y = {vi},
Z = {wi} be bases in U , V , W . Then the correspondence between operators and their
matrix realizations is “covariant” in the sense that

[S ◦ T ]ZX = [S]ZY · [T ]YX

(a matrix product of compatible non-square matrices).

Proof: We have S ◦ T (ui) =
∑

k(S ◦ T )kiwk by definition, and also

S ◦ T (ui) = S(T (ui)) = S(
∑

j

tjivj) =
∑

j

tjiS(vj)

=
∑

j

(
∑

k

sklwk) tji =
∑

k

(
∑

j

skjtji)wk

=
∑

k

([S][T ])kiwk (definition of matrix product)

Thus [S ◦ T ]ki = ([S][T ])ki, for all i, k. !

4.7. Exercise. The n×m matrices Eij with a “1” in the (i, j) spot and zeros elsewhere,
are a basis for matrix space M(n × m, K) since [aij ] =

∑

i,j aijEij . When m = n the
matrices Eij have useful algebraic properties. Prove that:

1. These matrices satsify the identities

EijEkℓ = δjk ·Eiℓ

where δrs is the Kronecker delta symbol, equal to 1 if r = s and zero otherwise.

2. The “diagonal” elements Eii are projections, with E2
ii = Eii.

3. E11 + . . . + Enn = In×n (the identity matrix).

If T : V → W is an invertible (bijective) linear operator between finite dimensional
spaces, then dim(V ) = dim(W ) = n and the inverse map T−1 : W → V is also linear
(recall Exercise II.2.3). From the definition of the inverse map T−1 we have

T−1 ◦ T = idV and T ◦ T−1 = idW ,

so each operator undoes the action of the other. For any bases X, Y in V, W the corre-
sponding matrix realizations of T and T−1 are inverses of each other too. To see why,
first recall

[idV ]XX = In×n and [idW ]YY = In×n .
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Then by Proposition 4.6,

[T−1]XY · [T ]YX = In×n and [T ]YX · [T−1]XY = In×n ,

which means that [T−1]XY is the inverse [T ]−1
YX of the matrix of T . When V = W and

there is just one basis X and all this reduces to the simpler statement [T−1] = [T ]−1.

4.8. Exercise. Explain why isomorphic vector space must have the same dimension,
even if one of them is infinite dimensional.

4.9. Exercise. If T : V → W is an invertible linear operator, prove that (T−1)−1 = T .

4.10. Exercise. If U
T−→ V

S−→ W are invertible linear operators, explain why S ◦ T :
U → W is invertible, with (S ◦ T )−1 = T−1 ◦ S−1. (Note the reversal of order.)

For A ∈ M(n, K), we have defined the linear operator LA : Kn → Kn via LA(x) = A·x,
regarding vectors x as n × 1 column matrices.

4.11. Exercise. Prove that the correspondence L : M(n, K) → HomK(Kn, Kn) has the
following algebraic properties.

1. LA+B = LA + LB and Lλ·A = λ·LA for all λ ∈ K;

2. LAB = LA ◦ LB;

3. If I = In×n is the identity matrix, then LI = idKn .

4. LA is an invertible linear operator if and only if the matrix inverse A−1 exists in
M(n, K), and then we have (LA)−1 = (LA−1).

4.12. Exercise. Explain why the correspondence L : M(n, K) → HomK(Kn, Kn) is a
linear bijection and an isomorphism between these associative algebras.

4.13. Exercise. If A ∈ M(n × m, K) and X, Y are the standard bases in coordinate
spaces Km, Km prove that the matrix B = [LA]Y,X that describes LA : Km → Kn for
this particular choice of bases is just the original matrix A
Note: Does this work for arbitrary bases in Kn?

4.14. Exercise. Let P = K[x] be the infinite dimensional space of polynomials over K.
Consider the linear operators

1. Derivative: D(a0 + a1x + ... + anxn) = a1 + 2a2x + ... + nanxn−1;

2. Antiderivative: A(a0 + a1x + ... + anxn) = a0x + 1
2a1x2 + . . . + 1

n+1anxn+1

Show that D◦A = idP but that A◦D ̸= idP . (What is A◦D?) Show that D is surjective
and A is one-to-one, but ker(D) ̸= (0) and the range R(D) ̸= P .

This behavior is possible only in an infinite dimensional space. We have already observed
(recall Corollary II.1.6) that if finite dimensional spaces V, W have the same dimension,
the following statements are equivalent.

T is one-to-one T is surjective T is bijective

4.15. Exercise. If A ∈ M(n, K) define its trace to be

Tr(A) =
n
∑

i=1

aii (sum of the diagonal entries)

Show that, for any A, B ∈ M(n, K),
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1. Tr : M(n, K) → K is a linear map.

2. Tr(AB) = Tr(BA);

3. If B = SAS−1 for some invertible matrix S ∈ M(n, K) then Tr(SAS−1) = Tr(A).

Change of Basis and Similarity Transformations. If T : V → W is a
linear map between finite dimensional spaces and X, X′ ⊆ V and Y, Y′ ⊆ W are different
bases, it is important to understand how the matrix models [T ]YX and [T ]Y′X′ are related
as we seek particular bases yielding simple descriptions of T . For instance if T : V → V
we may ask if T is diagonalizable over K : Is there a basis such that

[T ]XX =

⎛

⎜

⎜

⎜

⎝

λ1 0
0 λ2

. . .
0 λn

⎞

⎟

⎟

⎟

⎠

(repeats allowed among the λi). Not all operators are so nice, and if T is not diagonaliz-
able we will eventually work out a satisfactory but more complicated “Plan B” for dealing
with such operators. All this requires a clear understanding of how matrix descriptions
behave under a “change of basis.”

4.16. Theorem (Change of Basis). Let T : V → V be a linear operator on a finite
dimensional space and let idV be the identity operator on V . If X = {e1, ..., en} and
Y = {f1, ..., fn} are bases in V , then

(19) [T ]YY = [idV ]YX ·[T ]XX ·[idV ]XY

Futhermore [idV ]XY and [idV ]YX are inverses of each other.

Proof: Since T = idV ◦ T ◦ idV : V → V → V , repeated application of Proposition 4.3
yields (19), as in the following system of commuting diagrams.

Kn
[idV ]XY

−−−−−→ Kn
LA

−−−−−→ Kn
[idV ]YX

−−−−−→ Kn

↑ ↑ ↑ ↑

(V, Y)
idV

−−−−−→ (V, X)
T

−−−−−→ (V, X)
idV

−−−−−→ (V, Y)

where A = [T ]XX. Applying the same proposition to the maps idV = idV ◦ idV we get

In×n = [idV ]YY = [idV ]YX ·[idV ]XY

which proves [idV ]XY and [idV ]YX are mutual inverses. !

To summarize: there is a unique, invertible “transition matrix” S ∈ M(n, K) such that

(20) [T ]YY = S ·[T ]XX ·S−1, where S = [idV ]YX and S−1 = [idV ]XY

If we have explicit vector equations expressing the Y-basis vectors in terms of the X-
basis vectors, the matrix S−1 = [id]XY can be written down immediately; then we can

compute S = (S−1)
−1

from it.

4.17. Definition (Similarity Transformations). Two matrices A, B in M(n, K) are
similar if there is an invertible matrix S ∈ GL(n, K) such that B = SAS−1. The map-
ping σS : M(n, K) → M(n, K) given by σS(A) = SAS−1 is referred to as a similarity
transformation of A. It is also referred to by algebraists as “conjugation” of arbi-
trary matrices A by an invertible matrix S.
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Each individual conjugation operator σS(A) = SAS−1 is an automorphism of the asso-
ciative matrix algebra – it is a bijection that respects all algebraic operations in M(n, K):

σS(A·B) = σS(A)·σS(B)

σS(A + B) = σS(A) + σS(B)

σS(λ·A) = λ·σS(A) for λ ∈ K

σS(In×n) = In×n

for all matrices A, B and all “conjugators” S ∈ GL(n, K). But there is even more to be
said: the correspondence ψ : S → σS has important algebraic properties of its own,

σS1S2
= σS1

◦ σS2
for all invertible matrices S1, S2

σIn×n
= (the identity operator idM on matrix space M = M(n, K) )

from which we automatically conclude that

The operator σS−1 is the inverse (σS)
−1

of conjugation by S.

Thus the conjugation operators {σS : S ∈ GL} form a group of automorphisms acting
on the algebra of n × n matrices.

When a linear operator T : V → V is described with respect to different bases
in V , the resulting matrices must be similar as in (20). The converse is also true: if
A = [T ]XX and B = SAS−1 for some invertible matrix S, there is a basis Y such that
B = [T ]YY. Thus, the different matrix models of T corresponding to bases Y other than
X are precisely the similarity transforms {S [T ]XXS−1 : S is invertible}.

4.18. Lemma. If T : V → V is a linear operator on a finite dimensional vector space
V and if A = [T ]XX then a n × n matrix B is equal to [T ]YY for some basis Y if and
only if B = SAS−1 for some invertible matrix S.

Proof: (⇒) follows from (20). For (⇐): since S is invertible it has a matrix inverse
S−1. (Later we will discuss effective methods to compute matrix inverses such as S−1.)
According to Theorem 4.16, what we need is a basis Y = {f1, ..., fn} such that [idV ]XY =
S−1; then [idV ]YX = (S−1)−1 = S and B = S [T ]XXS−1. If we write S−1 = [aij ] the
identity S−1 = [idV ]XY means that

fi = idV (fi) =
∑

j

ajiej for 1 ≤ i ≤ n

where X = {e1, ..., en}. This is the desired new basis Y = {fj}. To see it is a basis, we
have {fj} ⊆ K-span{e1, ..., en} by definition, but {ei} is in K-span{fj} because the matrix
S−1 = [aij ] is invertible; in fact, S−1S = I implies that

∑

i ajisik = δjk (Kronecker
delta). Then

∑

i

sikfi =
∑

i

sik(
∑

j

ajiej) =
∑

j

(
∑

i

ajisik) ej =
∑

j

δjkej = ek

for 1 ≤ k ≤ n, so {ek} ⊆ K-span{fj} as claimed. Therefore {e1, ..., en} and {f1, ...fn}
both span V , and because {ei} is already a basis {fj} must also be a basis. !

The next example shows that it can be difficult to tell by inspection whether an
operator T is diagonalizable.

4.19. Example. Let T : C2 → C2 be the linear operator whose action on the standard
basis X = {e1 = (1, 0), e2 = (0, 1)} is

T (e1) = 4e1 T (e2) = −e2
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Clearly T is diagonalized by the X-basis since

[T ]XX =

(

4 0
0 −1

)

Compute [T ]YY for the basis

f1 =
1√
2
(e1 + e2) f2 =

1√
2
(e1 − e2)

Solution: We have [T ]YY = S [T ]XXS−1 where S = [idV ]YX and S−1 = [idV ]XY. This
inverse can be computed easily from our definition of the vectors f1, f2:

(21)
f1 = id(f1) =

1√
2
e1 +

1√
2
e2

f2 = id(f2) =
1√
2
e1 −

1√
2
e2

which implies

S−1 = [id]XY =

(

1√
2

1√
2

1√
2

− 1√
2

)

=
1√
2
·
(

1 1
1 −1

)

The inverse of this matrix (found by standard matrix algebra methods or simply by
solving (21) for e1, e2 in terms of f1, f2) is

[id]YX = (S−1)−1 = S = −
1√
2
·
(

−1 −1
−1 1

)

=
1√
2
·
(

1 1
1 −1

)

(Notice that S = S−1; this is not usually the case.) Then we get

[T ]YY = [S] [T ]XXS−1 =
1√
2
·
(

1 1
1 −1

)(

4 0
0 −1

)(

1 1
1 −1

)

·
1√
2

= 1
2 ·
(

4 −1
4 1

)(

1 1
1 −1

)

= 1
2 ·
(

3 5
5 3

)

=

( 3
2

5
2

5
2

3
2

)

Diagonalizability of T would not be at all apparent if we used the basis Y = {f1, f2} to
represent T . !

4.20. Exercise. Compute the matrix [T ]YY for the linear operator T : C2 → C2 of the
previous example for each of the folowing bases Y = {f1, f2}:

1.

{

f1 = 1√
2

(e1 + e2)

f2 = 1√
2

(−e1 + e2) (obtained by rotating the standard basis vectors by θ = +45◦)

2.

{

f1 =
√

3
2 e1 + 1

2e2

f2 = − 1
2e1 +

√
3

2 e2 (the standard basis vectors rotated by θ = +30◦)

3.

{

f1 = e1 + ie2

f2 = e1 − ie2 ( where i =
√
−1 in C and V = C2 )
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Figure 2.4. Similarity classes (= conjugacy classes) in M(n, K) partition matrix space
into disjoint subsets [A]. Some classes are single points, for instance [−I], [I], and [0].

Othere sre complicated hypersurfaces in Rn
2 ∼= M(n, R). A similarity class could have

seevral disconnected components.

4.21. Exercise. Let Pn= polynomials of degree ≤ n. Let D = d/dx : Pn → Pn,
the formal derivative of a polynomial. Compute [D]XX with respect to the basis X =
{1-, x, ..., xn}. Compute [D2]XX and [Dn+1]XX too.

An RST equivalence relation on a set X is rule declaring certain points x, y ∈ X
to be “related” (and others not). Writing x

R
∼ y when the points are related, the phrase

“RST” means the relation is

1. Reflexive: x
R
∼ x for all x ∈ X .

2. Symmetric: x
R
∼ y ⇒ y

R
∼ x.

3. Transitive: x
R
∼ y and y

R
∼ z ⇒ x

R
∼ z

For each x ∈ X we can then define its equivalence class, the subset

[x]
R

= {y ∈ X : y
R
∼ x}

The RST property forces distinct equivalence classes to be disjoint, so the whole space
X decomposes into a the disjoint union of these classes.

One example of an RST equivalence is “congruence mod a fixed prime p” in the set
X = Z,

k ∼ ℓ ⇔ k ≡ ℓ (mod p) ⇔ k and ℓ differ by a multiple of p

It is easily verified that this is an RST relation and that the equivalence class of an
integer m is its (mod p) congruence class

[m] = m + pZ = {k ∈ Z : k ≡ m (mod p) }

There are only finitely many distinct classes, namely [0], [1], . . . , [p−1], which are disjoint
and fill Z. The finite field Zp is precisely this set of equivalence classes equipped with
suitable ⊕ and ⊙ operations inherited from the system of integers (Z, +, · ).

Similarity of matrices

(22) A
R
∼ B ⇔ B = SAS−1 for some invertible matrix S ∈ GL(n, K)

is an important example of an RST relation on matrix space X = M(n, K). The RST
properties are easily verified.

52



4.22. Exercise. Prove that similarity of matrices (22) has each of the RST properties.

The equivalence classes partition M(n, K) into disjoint “similarity classes” (aka “con-
jugacy classes”). All the matrices [T ]XX associated with a linear operator T : V → V
constitute a single similarity class in matrix space – they are all the possible represen-
tations of T corresponding to different choice of bases in V – and different operators
correspond to disjoint similarity classes in M(n, K).

The similarity classes don’t all look the same. Some are trivial, consisting of a single
point: for instance if

A = 0 or A = λIn×n (a scalar multiple of the identity matrix)

we have

SAS−1 = λ·SIS−1 = λ · SS−1 = λI = A for all S ∈ GL(n, K)

The similarity class [A] consists of the single point A. In particular, [0] = {0}, [I] = {I}
and [−I] = {−I}. When K = R and we identify M(n, R) with Rn2

, other similarity
classes can be large curvilinear surfaces in Euclidean space. They can be quite a mess to
compute.

4.23. Exercise. If A ∈ M(n, K) prove that

1. A commutes with all n×n matrices ⇔ A = λ·In×n, a scalar multiple if the identity
matrix for some λ ∈ K.

2. A commutes with all matrices in all invertible matrices GL(n, K) = {A : det(A) ̸=
0} ⇔ A commutes with all n × n matrices, as in (1.)

Hint: Recall the matrices Eij defined in Exercise 4.7, which are a basis for matrix
space. In (2.), if i ̸= j then I + Eij is invertible (verify that (I − Eij) is the inverse),
and commutes with A. Hence Eij commutes with A; we leave you to figure out what to
do when i = j. If A commutes with all basis vectors Eij it obviously commutes with all
n × n matrices, and (1.) can be applied.

This shows that a similarity class [A] in M(n, K) consists of a single point ⇔ A = λI (a
scalar matrix).

Figure 2.5. The diagonalization problem for A ∈ M(n, K) amounts to searching for one
(or more) diagonal matrices lying in the similarity class [A] = {SAS−1 : S ∈ GL(n, K)}.

4.24. Exercise. When we identify M(2, R) ∼= R4 via the linear isomorphism

x = φ(A) = (a11, a12, a21, a22) ,
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show that the similarity class [A] of the matrix

A =

(

1 1
0 1

)

is the 2-dimensional surface in R4 whose description in parametric form, described as the
range of a polynomial map φ : R2 → M(2, R), is

[A(s, t)] =

{(

1 − st s2

−t2 1 + st

)

: s, t ∈ R and (s, t) ̸= (0, 0)

}

Note: A matrix S =

„

a b

c d

«

is invertible if the determinant det(S) = ad− bc is not 0,

and then the inverse matrix is

S−1 =
1

det(S)

(

d −b
−c a

)

!

We will have a lot more to say about change of basis, similarity classes, and the
diagonalization problem later on. Incidentally, not all matrices can be put into diagonal
form by a similarity transformation. Our fondest hope is that in the equivalence class
[A] there will be at least one point SAS−1 that is diagonal (there may be several, as in
Figure 2.5). If A = [T ]XX for some linear operator T : V → V this is telling us which
bases Y make [T ]YY diagonal, or whether there are any such bases at all.

4.25. Exercise. Suppose T : R2 → R2 is the linear operator such that T (e1) = 0 and
T (e2) = e1, so its matrix with respect to the standard basis X = {e1, e2} is [T ]XX =
„

0 1
0 0

«

. Prove that no basis Y = {f1, f2} can make [T ]YY diagonal.

Hint: S =

„

a11 a12

a21 a22

«

is invertible ⇔ the determinant det(S) = a11a22 − a12a21 is

nonzero. We will eventually develop systematic methods to answer questions of this sort.
For the moment, you will have to do it “bare-hands.”
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